Extracting linguistic rules from data sets using fuzzy logic and genetic algorithms
نویسندگان
چکیده
Linguistic rules in natural language are useful and consistent with human way of thinking. They are very important in multi-criteria decision making due to their interpretability. In this paper, our discussions concentrate on extracting linguistic rules from data sets. In the end, we firstly analyze how to extract complex linguistic data summaries based on fuzzy logic. Then, we formalize linguistic rules based on complex linguistic data summaries, in which, the degree of confidence of linguistic rules from a data set can be explained by linguistic quantifiers and its linguistic truth from the fuzzy logical point of view. In order to obtain a linguistic rule with a higher degree of linguistic truth, a genetic algorithm is used to optimize the number and parameters of membership functions of linguistic values. Computational results show that the proposed method is an alternative method for extracting linguistic rules with linguistic truth from data sets. & 2011 Elsevier B.V. All rights reserved.
منابع مشابه
Fuzzy Weighted Data Mining from Quantitative Transactions with Linguistic Minimum Supports and Confidences
Data mining is the process of extracting desirable knowledge or interesting patterns from existing databases for specific purposes. Most conventional data-mining algorithms identify the relationships among transactions using binary values and set the minimum supports and minimum confidences at numerical values. Linguistic minimum support and minimum confidence values are, however, more natural ...
متن کاملLearning the membership function contexts for mining fuzzy association rules by using genetic algorithms
Different studies have proposedmethods formining fuzzy association rules fromquantitative data, where themembership functions were assumed to be known in advance. However, it is not an easy task to know a priori the most appropriate fuzzy sets that cover the domains of quantitative attributes for mining fuzzy association rules. This paper thus presents a new fuzzy data-mining algorithm for extr...
متن کاملIntrusion Detection Using Data Mining Along Fuzzy Logic and Genetic Algorithms
Intrusion Detection is one of the important area of research. Our work has explored the possibility of integrating the fuzzy logic with Data Mining methods using Genetic Algorithms for intrusion detection. The reasons for introducing fuzzy logic is two fold, the first being the involvement of many quantitative features where there is no separation between normal operations and anomalies. Thus f...
متن کاملObtaining fuzzy rules from interval-censored data with genetic algorithms and a random sets-based semantic of the linguistic labels
Fuzzy memberships can be understood as coverage functions of random sets. This interpretation makes sense in the context of fuzzy rule learning: a random sets-based semantic of the linguistic labels is compatible with the use of fuzzy statistics for obtaining knowledge bases from data. In particular, in this paper we formulate the learning of a fuzzy rule based classifier as a problem of statis...
متن کاملExtracting fuzzy classi cation rules with gene expression programming
In essence, data mining consists of extracting knowledge from data. This paper proposes an evolutionary system for discovering fuzzy classi cation rules. Fuzzy logic is useful for data mining especially in the case for performing classi cation task. Three methods were used to extract fuzzy classi cation rules using Evolutionary Algorithms: (1) genetic selection small number of large number of f...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Neurocomputing
دوره 78 شماره
صفحات -
تاریخ انتشار 2012